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Compressible magnetoconvection in oblique fields : 
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The linear stability of a layer of compressible fluid, permeated by an oblique 
magnetic field, is discussed. It is shown that regardless of the system parameters, all 
bifurcations generically lead to travelling waves. Wave speeds and direction of the 
wave propagation are investigated. Symmetry arguments are used to show that 
when the field is almost vertical, waves with a wave vector aligned with the tilt are 
preferred over those with a wave vector perpendicular to the tilt. The nonlinear 
development of the travelling waves is explored using simple model equations. 

1. Introduction 
There have been numerous studies undertaken of the nonlinear interaction of 

magnetic fields and compressible convection in a horizontal fluid layer (Nordlund & 
Stein 1989; Cattaneo 1984; Hurlburt 6 Toomre 1988; Hurlburt et al. 1989; Weiss 
et al. 1990). These papers were all motivated by the desire to understand the physics 
of sunspots and flux tubes in the solar convection zone. In all of them the magnetic 
field imposed a t  the start of the calculation was uniform and vertical and during the 
subsequent evolution the field was assumed to remain vertical a t  the horizontal 
boundaries of the computational domain. In these circumstances it is possible to find 
both steady and oscillatory motions near the onset of instability ; and the oscillations 
can appear either as standing or travelling waves. A considerable amount of effort 
has been expended by the above authors in understanding the interaction of these 
various types of solutions. Similar remarks apply to convection in an imposed 
horizontal field. This has been less intensively studied and then primarily in the 
Boussinesq limit (Proctor & Weiss 1982; Arter 1983; Knobloch 1986; Brownjohn 
et al. 1992). 

However, it is clear that in general solar magnetic fields are neither parallel nor 
perpendicular to the gravity vector. In the Boussinesq limit, for which the material 
properties are constant and there is a symmetry between the top and bottom of the 
layer, the bifurcation structure is unaffected when the imposed field is oblique. In  the 
compressible case the symmetry disappears and it is then impossible to find 
bifurcations leading to steady convection except for special values of parameters. 
Now all solutions arising from initial bifurcations take the form of travelling waves ; 
and the waves have different stability properties depending upon the direction of 
their phase velocity with respect to the direction of the imposed magnetic field. 
Standing waves can no longer appear at primary bifurcations and indeed their 
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analogues in the oblique case (which are actually modulated waves) can only arise 
through secondary bifurcations from travelling waves. 

It is clearly of interest to know the preferred direction of the waves and their phase 
speeds as functions of the angle of obliquity and strength of the imposed field. The 
full resolution of these questions will have to await a proper nonlinear analysis of the 
governing equations. In this paper we solve the linear stability problem for various 
values of the parameters to  allow us to  deduce the small-amplitude behaviour. We 
then indicate by means of simple nonlinear model equations how the various solution 
branches may interact in the nonlinear regime. 

The plan of the paper is as follows. In  $2 we present the equations and boundary 
conditions of our model. Section 3 gives the results of linearized theory, and $4 
discusses the extension to three dimensions. Section 5 details travelling wave 
solutions for our simple nonlinear model equations. In  $6 we conclude and discuss the 
relevance of our results to convection in the vicinity of a sunspot. 

2. Equations 
We shall analyse compressible convection in a stratified atmosphere identical to 

that considered in Hurlburt et al. (1989), to which the reader is referred for full details 
of the basic state and non-dimensionalizaton. The only difference from the situation 
considered there is that now the imposed field is not vertical but tilted clockwise by 
an angle $, 0 < $ < (see figure 1). We assume this atmosphere experiences a 
uniform gravitational acceleration g directed downwards and possesses a constant 
shear viscosity p, a constant thermal conductivity K ,  a constant magnetic diffusivity 
7, and a constant magnetic permeability po. Further, we shall assume that the fluid 
satisfies the equation of state for a perfect monatomic gas with constant heat 
capacities c, and c p .  

We assume that there is no dependence on the horizontal component y so that the 
flow and the field are two-dimensional depending only on the coordinates x 
(horizontal) and z (vertical, increasing downwards). For the purposes of this paper we 
require only the linearized equations. The perturbation pressure, density, velocity, 
temperature, and magnetic field are denoted by P ,  p ,  u, T and B ;  we denote the static 
state by the subscript s. We then have the continuity equation 

ap/a t+p ,v .u+u.vp ,  = 0, (2.1) 
the compressible NavierStokes equations 

au 1 
ps - = - V P  + pgi + - ( - V (  B, * B )  + B, - V B )  + ~ ( V U  + gVV * u), (2.2) 

at PO 

the total energy equation 

p ,  c,  g+ u .  VT,) + P, V .  u = K V 2  T ,  (2.3) 

and the induction equation 

(2.4) , 
aB 
- + B B , V * ~ - B , * V ~  = rV2B. 
at 

These are augmented by the equation of state for a perfect gas which implies 

p = R*(P, T+PT,), (2.5) 

where R, is the gas constant. 
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FIQTJRE 1. The model under consideration, showing the sense of the direction 
of slope of the magnetic field. 

It is convenient to display all variables in dimensionless form hereafter. We shall 
take our unit of length to be the depth of the layer d. We will scale the density by 
the initial density po (prior to the onset of convection) at  the top of the unstable layer 
and the temperature by the (fixed) temperature difference AT across the unstable 
layer. Our time unit is d/(R,AT)i and is related to the sound travel time across the 
layer. The magnetic field is scaled by B,, the strength of the initially uniform field. 

The stratification in the absence of motion when K is constant is simply that of a 
polytrope, where temperature, density and pressure have the form 

where the polytropic index rn is determined by rn = gd/R,AT- 1 and zo is an 
integration constant which represents the dimensionless temperature at the top of 
the layer. The dimensionless depth variable z ranges from z = zo to zo + 1, so the 
density contrast measuring the ratio of the density at the bottom to that at  the top 
of the layer is 

The degree of instability may be measured by the Rayleigh number, which has a 
local value of 

22m-1 

R = ( n ~  + 1) ( 1 - (rn + 1) (7 - 1)/7) - (2.8) uK2 z:m ’ 

where 

is the dimensionless thermal conductivity, 

u = p , / K  (2.10) 

is the Prandtl number and y = cp/cv.  Since R varies with depth, it is most convenient 
to evaluate it at midlayer, thereby setting R(zo+i)  =- R,, since such a choice 
approaches the Boussinesq definition as x +- 1. 
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The effect of the magnetic field upon the convective stability can be measured by 
the Chandrasekhar number 

and the magnetic Prandtl number is defined as 

Co = 7 P O C P / K .  

(2.11) 

(2.12) 

The subscript zero, as used in zo, po and go, indicates evaluation of these variables a t  
the top of the layer. 

We assume that the temperature is fixed on the top and bottom horizontal 
surfaces. The field is constrained to make an angle $ with the vertical at these 
surfaces at  all times. The vertical velocity and the horizontal viscous stresses are also 
assumed to vanish there. These conditions require 

(2.13) I au 
aZ w = o ,  - = 0 ,  T = 0 ,  

aA 8A 
-cos$ =-sin$ at z =  zo and z = z o + l ,  
a Z  ax 

where u and w are the horizontal and vertical velocity components and the scalar flux 
function A is related to the magnetic field by B = V x (A$). We impose periodic 
conditions for all the variables on the vertical bounding surfaces a t  x =  0 and 
x = 27c/k, where k is the wavenumber of the perturbation. 

We are then left with a linear boundary-value problem which is separable in x and 
t ;  thus we seek solutions of the form u = Re (iZ(z) est+iks), and similarly with the other 
variables. Dropping the tilde, the eigenvalue problem for the growth rate s is given 

KCo (D2-kk2)A-ucos$-wsin$ = sA, (2.14) 

(2.15) 

by 

uK( (D2 -$k2)  u + 5ikDw) - Qu<oK2(D2 - k2)A  cos $ - ki(zofp +fmT)  = f" su, 

ulf( ($D2 - k 2 )  w + iikDu) - QaColf2 ( D2 - k2) A sin $ 
+ ( m - ~ , f D ) p - f " ( D + m / f ~ ~ ) T =  fmgW,  (2.16) 

Ifrf-"(D2-k2)T-zof(y-1) (Dw+iku)-w = sT, (2.17) 

(2.18) 

where f = z / z o  and D = d/dz. 
Notice that when $ = 0 we can seek solutions in which w, p and T are real while 

u and A are imaginary, and s is real. The introduction of the sin $ terms in the above 
equations breaks the symmetry and means that this is no longer possible. In general, 
therefore, the eigenvalue s is complex and all bifurcations are Hopf bifurcations 
leading to travelling waves. 

-f" ((D+m/fzo) w+iku) = sp, 

3. Results 
The eigenvalue problem (2.14)-(2.18) was solved by a modification of a package 

developed by F. Cattaneo (for details see Cattaneo 1984). The complex eigenvalue s 
is determined in terms of the dimensionless parameters Q, R,, z,,, m, y ,  u, go, k and 9. 
Clearly a full exploration of parameter space is impossible ! We therefore concentrate 
on the particular values zo = 0.5, m = 1 (giving a density contrast x = 3), y = $, 
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cr = 1,[, = 0.05 and vary R,, Q ,  k and q5 to find bifurcation points at  which s is purely 
imaginary. If Im(s) is positive (negative) then we have a leftward (rightward) 
travelling wave, in the sense of figure 1.  

The dependence of the critical Rayleigh number R, (for which Re(s) = 0) on the 
wavenumber k at Q = 20 is shown in figure 2 .  Figure 2 ( a )  shows the case of a vertical 
field, q5 = 0, in which an oscillatory mode becomes unstable at  a lower Rayleigh 
number than the steady mode, provided that k is sufficiently small. Figure 2(b )  
illustrates the symmetry breaking of this oscillatory mode at a field angle q5 = in. 

The path of the eigenvalues in the complex plane as R, is varied is shown in figure 
3, for Q = 20 at a fixed wavenumber of k = 2.3 which is close to the preferred 
wavenumber. Figure 3 ( a )  shows the symmetric case q5 = 0, and figure 3 ( b )  shows the 
situation for q5 = in illustrating the symmetry breaking between positive and 
negative frequencies. This shows that for these parameter values it is a right-going 
wave which first becomes unstable as the Rayleigh number is increased. 

Figure 4 shows the minimum critical Rayleigh number Rmin (minimized over k), 
the wave speed and preferred wavenumber as a function of the angle q5 for Q = 1000 
for both the left- and right-going waves. The results show that for most values of 4, 
a right-going wave is preferred. However, for q5 close to in, the left-going wave is 
preferred. The results are qualitatively similar for different values of Q. Values 
between Q = 20 and lo4 were investigated. 

Because the eigenfunctions are complex, the flow is best visualized by multiplying 
by eiCZ and plotting the real part in the (x, 2)-plane. Figure 5 shows the flow and the 
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temperature perturbation for the vertical field, q5 = 0, for a right-going wave. Notice 
that although the flow forms rectangular cells, the temperature perturbation forms 
sloping cells. In the Boussinesq case, there is a constant phase lag with depth between 
the velocity and the temperature perturbation, but in the compressible case, this 
phase lag varies with z. The flow and temperature perturbation for q5 = in are shown 
in figure 6. Note that the flow becomes aligned with the magnetic field in this case. 

We have also investigated the effect of varying the boundary conditions on the 
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preferred direction of wave travel. For the purposes of a nonlinear calculation, it is 
necessary to modify slightly the boundary conditions, because the boundary 
conditions used above result in a horizontal force on the fluid layer which averages 
to zero in the linear system but causes movement of the entire fluid layer in the 
nonlinear regime. To avoid this, boundary conditions which remove the Galilean 
invariance of the problem can be used, for example replacing one of the stress-free 
boundaries by a no-slip boundary. We have checked that this change does not 
qualitatively change the results. However, altering the magnetic boundary condition 
so that the field lines are fixed on the boundaries ( A  = 0) does result in a qualitative 
change, with left-going waves being preferred for all q5. This same behaviour is also 
found if the magnetic boundary condition of matching to an external potential field 
is used. 

4. The three-dimensional problem 
The importance of the two-dimensional oblique-field solutions is greatly enhanced 

by the fact that for small q5 these modes are preferred in competition with possible 
solutions whose wave vector makes a non-zero angle with the direction of tilt. This 
situation is similar to the case of convection with non-parallel magnetic field and 
rotation vectors (Eltayeb 1975). When q5 is small, the problem can be addressed in 
a very simple way, exploiting the symmetries of the situation and avoiding a detailed 
analysis of the motion. 

Suppose that the direction of tilt is parallel to the x-axis, as shown in figure 1, and 
let the wave vector of the linearized disturbance be k = (k cos a, k sin a). 

Consider first the case a = 0, corresponding to the two-dimensional problem of the 
previous section. Then because of the asymmetry between left- and right-going 
waves, for small q5 the perturbation to the growth rate (or the minimum critical 
Rayleigh number) due to the tilt is of order q5. Thus in figure 4(a) we see that Rmin 
is a linear function of q5 for sufficiently small q5. 

Now consider the case a = in, representing a wave travelling in a direction 
perpendicular to the plane of tilt. In this configuration the system is symmetric 
under a sign change of 4, since k is unchanged by a reflection in the plane x = 0. Thus 
the perturbation to the growth rate for this mode must be of order q52. For sufficiently 
small q5 therefore, it is clear from symmetry arguments alone that a wave travelling 
in the plane of tilt (a = 0) is preferred over one travelling perpendicular to the tilt 
(a = Ln) 2 .  

For q5 of order 1, this argument no longer holds. Indeed for a horizontal field 
(q5 = $n) we expect that the preferred direction of the wave vector will be a = in, by 
analogy with the Boussinesq case. 

It can be seen that for a = in the situation resembles the vertical field case in that 
there is no preferred direction to the travelling waves. But any amount of obliquity 
of a will induce an asymmetry, so the preferred mode will propagate in a definite 
direction relative to the field tilt. This will remain true even when the field is almost 
horizontal. 

The behaviour for small q5 can be represented by the following model equation for 
the perturbation As to the growth rate : 

As = q5B (cos a- 1) + q52 C sin2 a, (4.1) 
where B > 0 without loss of generality and we choose C > 0 to obtain the expected 
transition to non-zero a. For a fluid which is almost Boussinesq, B is small but C is 
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of order 1. Maximizing As over a,  we find that the preferred mode is a = 0 for 
9 < B/2C,  and cosa = B/2C$ for $ > B/2C.  

Finally we note that the above discussion does not apply to the travelling wave 
mode that tends to the steady solution branch as 9 + 0. This mode will have a growth 
rate that depends on 9 only through $,, the sense of tilt appearing only in the 
direction of travelling. Thus the aligned modes are not necessarily preferred for small 
9 and a detailed solution would be necessary to determine the outcome. 

5. Nonlinear development of the travelling waves 
The linearized theory presented above shows only the onset of instability. It is 

clearly of interest to know the fate of travelling waves as their amplitude increases. 
Extensive studies of the Boussinesq equations with a vertical magnetic field have 
shown that typically the oscillatory solution branches end on the steady branch 
(Proctor & Weiss 1982). In  the present problem the distinction between steady and 
travelling wave branches disappears. A proper study would require a full solution of 
the nonlinear convection problem ; however, for illustrative purposes we consider 
here a simple model that  encapsulates the general features and allows some 
analytical progress. Such a model is readily available as a simple modification of the 
normal form for the Bogdanov bifurcation with O ( 2 )  symmetry (Dangelmayr & 
Knobloch 1987), which gives a general treatment of the vertical field case for 
parameters close to those at which the critical Rayleigh numbers €or steady and 
oscillatory modes coincide. The governing equation is fourth order in time and can 
be written to  cubic order in terms of the complex amplitude a as 

u + aa + AlaI2 a = @u - A,laI2 u + A, a2 i). (5.1) 
Here a and /3 are parameters which are related to R, and Q ,  and 8 is a small parameter 
measuring the distance from the multiple bifurcation point. Steady convection 
is represented by a steady solution a = R,, while travelling waves are given by 
a = Reiwt. Because the sign of w (representing the direction of wave propagation) is 
immaterial when the field is vertical, all the coefficients in (5.1) are real. 

To break the left-right symmetry, we must allow the coefficients in (5.1) to  be 
complex. If the asymmetric terms are O ( B ) ,  we may ignore the complex parts of the 
terms on the right-hand side of (5.1). It is also cumenient to discuss the effect of 
varying a single parameter, r ,  representing the Rayleigh number. With the 
magnetoconvection problem in mind, we allow /3 to  increase as r increases, while 
Re(a)  decreases. Then we obtain the system 

where -icl, and -ic, are the imaginary parts of a and A respectively. We can scale 
the amplitude a so that A, +A,  = f 1, and we choose the plus sign so as to obtain at 
least one stable branch of travelling waves. If we seek a neutrally stable travelling- 
wave solution, a = Reiwt with w real, then R and w are determined by the 
simultaneous equations 

- d + 1 - r + + 2 = 0 ,  (5.3) 

(5.4) c1 + c,R2 + w ( r  -R2) = 0. 

In  the symmetric case with c1 = c2 = 0, the travelling waves bifurcate at r = 0 and 
have an amplitude given by R2 = r ,  and the steady branch bifurcates at r = 1 with 
amplitude R2 = ( r  - l ) / A .  The coincident travelling-wave branches intersect the 
steady branch (and then cease to exist) at r = l / ( l - A ) ,  provided h < 1. 
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FIQURE 7. Travelling-wave solutions to (5.2) : solid line, right-going wave ; dashed line, left-going 
wave. (a) h = -1; c, = 0.3; c2 = -1, (b) h = 0.25; c, = 0.05; ct = 0, (c) A = 0.75; c, = 0.42; 
c2 = - 1, ( d )  h = 2; c, = 0.7; c, = -1.25, (e) h = - 1 ;  c, = 0.05; c2 = 0, (f) h = - 1 ; c1 = 0.378; 
c,= - 1 .  

For the asymmetric system (5.3), (5.4), the bifurcations occur at  values of T given 
by the roots of 

This has three roots if c: < 4/27 and one otherwise, and so is consistent with figure 
2, which shows that at a fixed wavenumber there are either three bifurcations or just 
one. All these bifurcations are Hopf bifurcations, i.e. w $: 0. 

The nonlinear solutions depend on the parameters c,, c, and A. We can eliminate 
w from (5.3) and (5.4) to obtain a cubic equation for R2. Without loss of generality 
we can take c, > 0. Figure 7 shows some typical examples of the dependence of R2 on 
T .  For small c,, c, these just show the breaking of symmetry between the two 
travelling-wave branches. For larger c, and c,, more complicated effects can appear, 
particularly when C,C, < 0. We have not attempted any detailed analysis of the 
dependence of the form of the solutions on the various parameters. 

The stability of these solutions is complicated by the fact that it  depends on the 
parameters A, and A, separately. However, we can assert that near R2 = 0 the left- 
most branch is stable if it bifurcates to the right. Some investigations of stability 
were carried out using the program AUTO. In each of the cases illustrated in figure 7, 
the left-most branch loses stability at a secondary Hopf bifurcation, giving rise to 

P ( 1 - T )  = c;. (5.5) 
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mixed-mode solutions which are analogous to standing waves in the symmetric case. 
The position of this bifurcation depends only weakly on the relative sizes of A, and 
A,. These mixed-mode solutions may then terminate on one of the single-mode 
branches, which subsequently becomes stable, or may end in a homoclinic connection 
to an unstable branch. Bearing in mind the complexity of the bifurcation diagrams 
exhibited in Dangelmayr & Knobloch (1987) for the symmetric case, we do not 
pursue these details here, although they clearly form an interesting subject for future 
research. 

6. Conclusions and discussion 
By imposing an oblique magnetic field on a compressible fluid we have broken the 

symmetries normally associated with convection problems. This means that the 
eigenvalue problem has complex solutions in general, corresponding to travelling 
waves. The symmetry breaking means that the oblique-field configuration is more 
unstable than the vertical-field case with the same total magnetic field strength, a t  
least for small $. When the motion is confined to the plane specified by the tilt of the 
field, the preferred mode (i.e. that which becomes unstable first as the Rayleigh 
number is increased) is a wave travelling to the right, in the sense of figure 1,  except 
when the angle of tilt is close to in. However, this result is sensitive to the precise 
choice of boundary conditions. 

When we consider the problem in three dimensions, the sloping magnetic field 
resolves the degeneracy of the direction of the wave vector. The symmetry breaking 
induced by a small angle of tilt ensures that waves travelling in the direction of tilt 
will be preferred over those travelling perpendicular to the tilt. For larger angles of 
tilt, however, the angle of the wave vector relative to the plane of the field increases. 
This symmetry-breaking argument also implies that the preferred wave vector will 
never be exactly perpendicular to  the plane of the field, except when the field is 
horizontal. 

Our nonlinear model for the behaviour of travelling waves shows how the waves 
may evolve in amplitude as the Rayleigh number is increased beyond critical. The 
amplitude is given by a cubic equation involving the Rayleigh number and other 
parameters, so there may be one or three solutions. 

This paper raises several questions for future research. It would be of interest to 
know the nonlinear development of the travelling waves and the possible interactions 
between them. This problem can be approached either by a numerical solution of the 
fully nonlinear partial differential equations (Hurlburt, Matthews & Proctor 1992) or 
by a more thorough investigation of our model equation (5.2). Another important 
question is whether the symmetry arguments concerning the preferred direction of 
wave travel relative to the plane of the magnetic field remain valid in the nonlinear 
regime. 

It is interesting to  speculate on the relevance of our work to  convection in the 
vicinity of a sunspot. Our results suggest that  near the centre of the sunspot, where 
the field is nearly vertical, waves would travel radially away from the centre. Further 
away where the field becomes more horizontal, we would expect waves with an 
almost radial roll axis. 
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